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genotypic characteristics of the HIV-1 virus?

Potential issues:

® Many ways to define genotype based on amino acid sequence
® |ow statistical power after adjusting for multiple comparisons
® Typically pre-specify small set of features

® Using machine learning-based methods in prediction

® What information do we gain about the population of interest?
® Formal statistical inference often difficult
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Variable importance may help to address these issues:

® Pre-existing data: identify important features and groups
® maintain statistical power, while
® making fuller use of the data at hand

® May obtain valid statistical inference on the importance

® necessary for decision making
® understand the population-level interplay between variables
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® A broadly-relevant definition of variable importance

® A method that:

® Estimates variable importance
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Motivation

What is the importance of different amino acid sequence features for
predicting the neutralization sensitivity of HIV-1 to VRC01?

We need:

® A broadly-relevant definition of variable importance
® A method that:
® Estimates variable importance

® Provides valid uncertainty assessment for our estimates
® May be used with flexible estimation procedures
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Variable importance: the data

Consider data Oy, ..., O, drawn from an unknown distribution Py:
® Oi = (Xi7 \/I)v
e X; € RP is a vector of covariates, and

® Y; € R is the outcome of interest.

Our goal: to describe the importance of some subset of the
covariates for predicting the outcome in the population.

Key object: the conditional mean, Ep (Y | X = x).
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Variable importance: linear regression

Objective: estimate the importance of X, s C {1,...,p}.

How is variable importance typically measured in linear regression?

1. Fit a linear regression of Y on X — [i(X)
2. Fit a linear regression of Y on X_g) — fi_s(X)

~

3. Compare the fitted values [fi(X;), fi—s(X;)] of each regression

Both sets of fitted values estimate a conditional mean!

Many ways to compare fitted values, including:
e Difference in R?
® ANOVA decomposition
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The mean squared error (MSE) of a linear regression function f:
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Variable importance: linear regression

The mean squared error (MSE) of a linear regression function f:

MSE(f) = ,172":{»/,- X
i=1

Difference in R?:
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ANOVA decomposition:
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Experiment in a linear model

X = (X1, X2) independent, and Y | X = x ~ N(3x1 + x,1).

Estimation procedure:
1. fi(x) < Fit linear regression with full X vector
2. [i_s(x) < Fit linear regression with either Xj or X, removed
3. Calculate difference in R?

4. Bootstrap-based confidence intervals

12



Experiment: results, linear regression
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Variable importance: extensions?

When pursuing variable importance more generally:
® what if the truth is a complex linear model?
® what if the truth is not a linear model at all?

® what if your collaborator wants to fit a flexible algorithm?

Fitting simple linear regression estimators (even including
interactions) may not be sufficient!

New experiment:
X = (X1, X2) independent, Y | X = x ~ N((x1 + x2)*, 1)

14



Experiment (interaction): results, linear regression

Jn x est. bias,
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Variable importance: flexible estimators?

Issues when fitting a flexible estimator (e.g., random forests):
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Variable importance: flexible estimators?

Issues when fitting a flexible estimator (e.g., random forests):
® bias-variance tradeoff for conditional mean
® algorithm-specific importance may not be comparable

® inference on this importance difficult

To handle these issues, we typically:
1. specify a population-based importance measure

2. correct for excess bias inhereted from flexible estimator

16
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Variable importance: population

How might we measure importance if we could predict perfectly?

Oracle prediction functions:
® 1f(x) = Ep,(Y | X =x)
° :“:S(X) = EPO(Y ’ X(—S) = X)

Population importance defined in terms of p*, p* !
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Variable importance: population

Both R? and ANOVA involve the MSE:
MSEp,(f*) := Ep,{Y — f*(X)}?;

MSEp,(11*)
po (1) varp,(Y)
0 0

The MSE is a risk: large values imply poor performance.

Variable importance: the best-case, population comparison of risks!
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Experiment in a linear model

X = (X1, X2) independent, Y | X = x ~ N(3x; + x2, 1).
Estimation procedure:

® [i(x) < Fit loess smoother with full X vector
® [i_s(x) < Fit loess smoother with either X; or X, removed
® plug in to calculate difference in R2, ANOVA

® |nfluence function-based confidence intervals

Question: do we need to correct the plug-in estimator?

No, for R?; Yes, for ANOVA (using the influence function).
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Experiment: results, flexible estimators (R?)

Jn x est. bias,
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Experiment: results, flexible estimators (ANOVA)

Jn x est. bias,
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Conclusions

Population variable importance may be thought of as the
best-case, population comparison of risks.
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Conclusions

Population variable importance may be thought of as the
best-case, population comparison of risks.
Asymptotically valid Cls based on plug-in estimators for:
e difference in R?
e difference in AUC
® cross-entropy (deviance)
even when using flexible estimation techniques are used.

We also have results in studies with missing data; here, some
correction is necessary!
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