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Motivation

The Antibody Mediated Prevention trials study prevention efficacy
of VRC01, a broadly neutralizing antibody, against HIV-1 infection.

Key question: how does prevention efficacy of VRC01 vary with
genotypic characteristics of the HIV-1 virus?

Potential issues:

• Many ways to define genotype based on amino acid sequence
• Low statistical power after adjusting for multiple comparisons
• Typically pre-specify small set of features

• Using machine learning-based methods in prediction
• What information do we gain about the population of interest?
• Formal statistical inference often difficult
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Motivation

Variable importance may help to address these issues:

• Pre-existing data: identify important features and groups
• maintain statistical power, while
• making fuller use of the data at hand

• May obtain valid statistical inference on the importance
• necessary for decision making
• understand the population-level interplay between variables
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Motivation

What is the importance of different amino acid sequence features
for predicting the neutralization sensitivity of HIV-1 to VRC01?

X1 = CD4 binding site

X2 = VRC01 binding footprint

Y = Neutralization sensitivity
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Motivation
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We need:

• A broadly-relevant definition of variable importance
• A method that:

• Estimates variable importance
• Provides valid uncertainty assessment for our estimates

vs.

7



Motivation

What is the importance of different amino acid sequence features for
predicting the neutralization sensitivity of HIV-1 to VRC01?

We need:

• A broadly-relevant definition of variable importance
• A method that:

• Estimates variable importance
• Provides valid uncertainty assessment for our estimates
• May be used with flexible estimation procedures
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Variable importance: the data

Consider data O1, . . . ,On drawn from an unknown distribution P0:

• Oi := (Xi ,Yi );

• Xi ∈ Rp is a vector of covariates, and

• Yi ∈ R is the outcome of interest.

Our goal: to describe the importance of some subset of the
covariates for predicting the outcome in the population.

Key object: the conditional mean, EP0(Y | X = x).
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Variable importance: linear regression

Objective: estimate the importance of Xs , s ⊆ {1, . . . , p}.

How is variable importance typically measured in linear regression?

1. Fit a linear regression of Y on X → µ̂(X )

2. Fit a linear regression of Y on X(−s) → µ̂−s(X )

3. Compare the fitted values [µ̂(Xi ), µ̂−s(Xi )] of each regression

Both sets of fitted values estimate a conditional mean!

Many ways to compare fitted values, including:

• Difference in R2

• ANOVA decomposition
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Variable importance: linear regression

The mean squared error (MSE) of a linear regression function f :

MSE (f ) =
1

n

n∑
i=1

{Yi − f (Xi )}2

Difference in R2:[
1− MSE (µ̂)

MSE (Y n)

]
−
[

1− MSE (µ̂−s)

MSE (Y n)

]
ANOVA decomposition:

1
n

∑n
i=1{µ̂(Xi )− µ̂−s(Xi )}2

MSE (Y n)
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Experiment in a linear model

X = (X1,X2) independent, and Y | X = x ∼ N(3x1 + x2, 1).

Estimation procedure:

1. µ̂(x)← Fit linear regression with full X vector

2. µ̂−s(x)← Fit linear regression with either X1 or X2 removed

3. Calculate difference in R2

4. Bootstrap-based confidence intervals
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Experiment: results, linear regression
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Variable importance: extensions?

When pursuing variable importance more generally:

• what if the truth is a complex linear model?

• what if the truth is not a linear model at all?

• what if your collaborator wants to fit a flexible algorithm?

Fitting simple linear regression estimators (even including
interactions) may not be sufficient!

New experiment:

X = (X1,X2) independent, Y | X = x ∼ N((x1 + x2)4, 1)

14



Variable importance: extensions?

When pursuing variable importance more generally:

• what if the truth is a complex linear model?

• what if the truth is not a linear model at all?

• what if your collaborator wants to fit a flexible algorithm?

Fitting simple linear regression estimators (even including
interactions) may not be sufficient!

New experiment:

X = (X1,X2) independent, Y | X = x ∼ N((x1 + x2)4, 1)

14



Variable importance: extensions?

When pursuing variable importance more generally:

• what if the truth is a complex linear model?

• what if the truth is not a linear model at all?

• what if your collaborator wants to fit a flexible algorithm?

Fitting simple linear regression estimators (even including
interactions) may not be sufficient!

New experiment:

X = (X1,X2) independent, Y | X = x ∼ N((x1 + x2)4, 1)

14



Variable importance: extensions?

When pursuing variable importance more generally:

• what if the truth is a complex linear model?

• what if the truth is not a linear model at all?

• what if your collaborator wants to fit a flexible algorithm?

Fitting simple linear regression estimators (even including
interactions) may not be sufficient!

New experiment:

X = (X1,X2) independent, Y | X = x ∼ N((x1 + x2)4, 1)

14



Experiment (interaction): results, linear regression
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Variable importance: flexible estimators?

Issues when fitting a flexible estimator (e.g., random forests):

• bias-variance tradeoff for conditional mean

• algorithm-specific importance may not be comparable

• inference on this importance difficult

To handle these issues, we typically:

1. specify a population-based importance measure

2. correct for excess bias inhereted from flexible estimator
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Variable importance: population

How might we measure importance if we could predict perfectly?

Oracle prediction functions:

• µ∗(x) := EP0(Y | X = x)

• µ∗−s(x) := EP0(Y | X(−s) = x)

Population importance defined in terms of µ∗, µ∗−s !
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Variable importance: population

Both R2 and ANOVA involve the MSE:

MSEP0(f ∗) := EP0{Y − f ∗(X )}2;

R2
P0

(µ∗) := 1− MSEP0(µ∗)

varP0(Y )

ANOVAP0 ≡ R2
P0

(µ∗)− R2
P0

(µ∗−s) :=

[
1− MSEP0(µ∗)

varP0(Y )

]
−
[

1−
MSEP0(µ∗−s)

varP0(Y )

]
The MSE is a risk: large values imply poor performance.

Variable importance: the best-case, population comparison of risks!
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Experiment in a linear model

X = (X1,X2) independent, Y | X = x ∼ N(3x1 + x2, 1).

Estimation procedure:

• µ̂(x)← Fit loess smoother with full X vector

• µ̂−s(x)← Fit loess smoother with either X1 or X2 removed

• plug in to calculate difference in R2, ANOVA

• Influence function-based confidence intervals

Question: do we need to correct the plug-in estimator?

No, for R2; Yes, for ANOVA (using the influence function).
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Experiment: results, flexible estimators (R2)
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Experiment: results, flexible estimators (ANOVA)
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Conclusions

Population variable importance may be thought of as the
best-case, population comparison of risks.

Asymptotically valid CIs based on plug-in estimators for:

• difference in R2

• difference in AUC

• cross-entropy (deviance)

even when using flexible estimation techniques are used.

We also have results in studies with missing data; here, some
correction is necessary!
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