Nonparametric Variable Importance Assessment using Machine Learning Techniques

> Brian D. Williamson, Peter B. Gilbert, Noah Simon, Marco Carone

> > JSM 2018

30 July 2018

What is the importance of different biological measurements for predicting the presence or absence of myocardial infarction (MI)?

 X_1 = heart rate X_2 = blood sugar Y = presence or absence of MI

What is the importance of different biological measurements for predicting presence or absence of MI?

We need:

• A definition of variable importance with minimal assumptions

What is the importance of different biological measurements for predicting presence or absence of MI?

We need:

- A definition of variable importance with minimal assumptions
- A method that:
 - Estimates variable importance

What is the importance of different biological measurements for predicting presence or absence of MI?

We need:

- A definition of variable importance with minimal assumptions
- A method that:
 - Estimates variable importance
 - Provides valid uncertainty assessment for our estimates

What is the importance of different biological measurements for predicting presence or absence of MI?

We need:

- A definition of variable importance with minimal assumptions
- A method that:
 - Estimates variable importance
 - Provides valid uncertainty assessment for our estimates
 - · May be used with flexible estimation procedures

Variable importance

- Data $\mathit{O}_1, \mathit{O}_2, \ldots, \mathit{O}_n$ from unknown distribution $\mathit{P}_0 \in \mathcal{M}$
 - $O_i := (X_i, Y_i)$
 - Covariate vector $X_i := (X_{i1}, X_{i2}, \dots, X_{ip}) \in \mathbb{R}^p$
 - Outcome $Y_i \in \mathbb{R}$
- Estimate $\mu_{P_0}(x) := E_{P_0}(Y \mid X = x)$
- Which features contribute most to variation in μ_{P0}(x)?
 - Consider $\mu_{P_0,s}(x) := E_{P_0}(Y \mid X_{(-s)} = x_{(-s)})$
 - $X_{(-s)} =$ covariates with indices in $s \subseteq \{1, 2, \dots, p\}$ removed

Existing variable importance methods

Method	Nonparametric estimation method	Uncertainty assessment	Fully general estimation
Parametric , e.g., ANOVA		\checkmark	
Technique-specific measures, e.g., random forests	~		\checkmark
Nonparametric variable importance using existing estimation procedures			

We propose a procedure that:

- estimates a scientifically meaningful parameter consistently and efficiently, while
- estimating μ_{P_0} and $\mu_{P_0,s}$ using state-of-the-art methods, and
- properly quantifies the uncertainty in our estimates

The parameter of interest

The importance of X_s relative to $X_{(-s)}$ for predicting Y: $\psi_{0,s} := \frac{E_{P_0} \left[\{ \mu_{P_0}(X) - \mu_{P_0,s}(X) \}^2 \right]}{\operatorname{Var}_{P_0}(Y)}.$

Interpretation:

- additional proportion of variability in Y explained by including X_s in the regression
- does not change with estimating procedure
- Equivalent to difference in R^2 between the two regressions:

$$\frac{E_{P_0}[\{Y - \mu_{P_0}(X)\}^2]}{\mathsf{Var}_{P_0}(Y)} - \frac{E_{P_0}[\{Y - \mu_{P_0,s}(X)\}^2]}{\mathsf{Var}_{P_0}(Y)}$$

 $\psi_{0,s}$ is a **property of P**₀, not any particular algorithm.

Statistical inference

Using a **population-based**, **model-agnostic** variable importance measure allows us to perform **statistical inference**.

We do this by borrowing from classical parametric theory:

- MLE $\hat{\theta}_n$ of θ_0 ; information $I(\theta_0)$, score $\dot{\ell}(\theta_0 \mid X)$
- Let $\tilde{\ell}(\theta_0 \mid X) = I^{-1}(\theta_0)\dot{\ell}(\theta_0 \mid X)$:
 - This is the efficient influence function (EIF) for θ_0

•
$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \tilde{\ell}(\theta_0 \mid X_i) + o_p(1)$$

•
$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightarrow_d N\left[0, E_{P_0}\left\{\tilde{\ell}(\theta_0 \mid X)^2\right\}\right] = N\{0, I^{-1}(\theta_0)\}$$

- Given an EIF for a nonparametric parameter:
 - Estimator with influence function = EIF is efficient
 - Can use similar distribution theory to parametric case

The EIF for $\Psi_s(P)$ relative to \mathcal{M}

Define
$$\Psi_s(P) := \frac{\Phi_s(P)}{\operatorname{Var}_P(Y)}$$
, where

$$\mu_P(x) = E_P(Y \mid X = x) \text{ and } \mu_{P,s}(x) = E_P(Y \mid X_{(-s)} = x_{(-s)})$$

$$\Phi_s(P) = E_P\left[\left\{\mu_P(x) - \mu_{P,s}(x)\right\}^2\right]$$

Then

$$o \mapsto D_{P,s}^{*}(o) := \frac{2\{y - \mu_{P}(x)\}\{\mu_{P}(x) - \mu_{P,s}(x)\} + \{\mu_{P}(x) - \mu_{P,s}(x)\}^{2}}{\mathsf{Var}_{P}(Y)} - \Phi_{s}(P)\left\{\frac{y - E_{P}(Y)}{\mathsf{Var}_{P}(Y)}\right\}^{2}$$

Asymptotic expansion

- Estimate the relevant components of P_0 using \widehat{P}_n
- Linearize Ψ using the EIF $D_{P,s}^*$ and use the empirical \mathbb{P}_n :

$$\begin{split} \Psi_{s}(\widehat{P}_{n}) - \Psi_{s}(P_{0}) &= \int D^{*}_{\widehat{P}_{n},s}(o)d(\widehat{P}_{n} - P_{0})(o) + R_{s}(\widehat{P}_{n}, P_{0}) \\ &= \frac{1}{n}\sum_{i=1}^{n}D^{*}_{P_{0},s}(O_{i}) \\ &+ \int \{D^{*}_{\widehat{P}_{n},s}(o) - D^{*}_{P_{0},s}(o)\}d(\mathbb{P}_{n} - P_{0})(o) \\ &+ R_{s}(\widehat{P}_{n}, P_{0}) - \frac{1}{n}\sum_{i=1}^{n}D^{*}_{\widehat{P}_{n},s}(O_{i}) \end{split}$$

linear term;

- empirical process term;
- remainder term;
- problem term!

(1st order) (2nd order) (2nd order) (irregular) A naive estimator of $\psi_{0,s}$

$$\psi_{0,s} = \frac{E_{P_0}\left(\{\mu_{P_0}(X) - \mu_{P_0,s}(X)\}^2\right)}{\operatorname{Var}_{P_0}(Y)}$$

Plug in estimators $\hat{\mu}(x)$ and $\hat{\mu}_s(x)$:

$$\hat{\psi}_{\text{naive},s} = \frac{n^{-1} \sum_{i=1}^{n} \{\hat{\mu}(X_i) - \hat{\mu}_s(X_i)\}^2}{n^{-1} \sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2}$$

Problems with the naive estimator

$$\Psi_{s}(\widehat{P}_{n}) - \Psi_{s}(P_{0}) = \frac{1}{n} \sum_{i=1}^{n} D_{P_{0},s}^{*}(O_{i}) + R_{s}(\widehat{P}_{n}, P_{0}) - \frac{1}{n} \sum_{i=1}^{n} D_{\widehat{P}_{n},s}^{*}(O_{i}) + \int \{D_{\widehat{P}_{n},s}^{*}(o) - D_{P_{0},s}^{*}(o)\} d(\mathbb{P}_{n} - P_{0})(o)$$

- "Bias" incurred from estimating components of P₀
- Generally neither efficient nor regular and asymptotically linear

Our proposed corrected estimator

Remove bias of $\hat{\psi}_{naive,s}$ and get regularity, asymptotic linearity, and efficiency by adding on $\frac{1}{n} \sum_{i=1}^{n} D^*_{\hat{P}_{n,s}}(O_i)$:

$$\hat{\psi}_{n,s} = \hat{\psi}_{\text{naive},s} + \frac{1}{n} \sum_{i=1}^{n} D^*_{\widehat{P}_n,s}(O_i),$$

or equivalently

$$\hat{\psi}_{n,s} = \hat{\psi}_{\text{naive},s} + \frac{n^{-1} \sum_{i=1}^{n} 2\{Y_i - \hat{\mu}(X_i)\}\{\hat{\mu}(X_i) - \hat{\mu}_s(X_i)\}}{n^{-1} \sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2}$$

Asymptotic behavior of the proposed estimator

Under some regularity conditions,

$$\sqrt{n}(\hat{\psi}_{n,s} - \psi_{0,s}) = n^{-1/2} \sum_{i=1}^{n} D^*_{P_0,s}(O_i) + o_P(1)$$

and

$$\sqrt{n}(\hat{\psi}_{n,s}-\psi_{0,s})\rightarrow_{d} N\left[0, E_{P_{0}}\left\{D^{*}_{P_{0},s}(O)^{2}\right\}\right].$$

- Consistent, regular, efficient
- Regularity conditions:
 - $\psi_{\mathbf{0},s} \neq \mathbf{0}$
 - $\hat{\mu}$, $\hat{\mu}_s$ converge quickly enough to μ_{P_0} , $\mu_{P_0,s}$
 - $D^*_{\hat{P}_n,s}$ falls in a P_0 -Donsker class with probability tending to one
- Estimate variance of $\hat{\psi}_{\textit{n,s}}$ empirically

Simulations with a low-dimensional vector of covariates

For data (Y, X_1, X_2) with distribution $X_1, X_2 \stackrel{iid}{\sim} Unif(-1, 1)$ and $\epsilon \sim N(0, 1)$ independent of (X_1, X_2) $Y = X_1^2 \left(X_1 + \frac{7}{5}\right) + \frac{25}{9}X_2^2 + \epsilon$

estimate the importance of X_1 and X_2 .

- Truths: $\psi_{0,1} \approx 0.158$, $\psi_{0,2} \approx 0.342$
- · Locally-constant loess, five-fold CV for bandwidth
- Percentile bootstrap for naive confidence intervals

Results

Results

Results (cross-validated estimator)

Results (cross-validated estimator)

The CORIS data [Rousseaw et al. (1983)]

n = 462, outcome = presence of MI

- Behavioral:
 - tobacco consumption,
 - alcohol consumption,
 - type-A behavior

- Biological:
 - systolic blood pressure,
 - LDL cholesterol,
 - adiposity,
 - obesity,
 - family history,
 - age

Super learner [van der Laan et al. (2007)] with boosted trees, elastic net, GAMs, random forests, and five-fold CV

Results from the CORIS data

Conclusions

We propose a procedure for estimating the **difference in population** \mathbb{R}^2 when including X_s and removing X_s , where:

- we estimate importance consistently and efficiently,
- obtain valid Cls, and
- estimate the conditional means using state-of-the-art methods

Future work:

- dealing with a boundary null hypothesis,
- working in a structured model (e.g., additive models),
- nested case-control study data,
- censoring

Thank you!

CRAN: package vimp PyPI: package vimpy https://github.com/bdwilliamson/vimp

Preprint: https://biostats.bepress.com/uwbiostat/paper422/

References

- [1] Breiman, L. Random forests. *Machine Learning*, 2001.
- [2] Chambaz A, Neuvial P, and van der Laan MJ. Estimation of a non-parametric variable importance measure of a continuous exposure. *Electronic Journal of Statistics*, 2012.
- [3] Doksum K and Samarov A. Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression. *The Annals of Statistics*, 1995.
- [4] Lei J, G'Sell M, Tibshirani R, and Wasserman L. Distribution-free predictive inference for regression. Journal of the American Statistical Association, 2018.
- [5] Rousseauw J, Du Plessis J, Benade A, Jordann P, Kotze J, Jooste P, and Ferreira J. Coronary risk factor screening in three rural communities. *South African Medical Journal*, 1983.
- [6] Sapp S, van der Laan MJ, and Page K. Targeted estimation of binary variable importance measures with interval-censored outcomes. *The International Journal* of *Biostatistics*, 2014.
- [7] van der Laan MJ. Statistical inference for variable importance. *The International Journal of Biostatistics*, 2006.
- [8] van der Laan MJ, Polley EC, and Hubbard AE. Super Learner. UC Berkeley Division of Biostatistics Working Paper Series, 2007.