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Motivation

What is the importance of different biological measurements for
predicting the presence or absence of myocardial infarction (MI)?

X1 = heart rate

X2 = blood sugar

Y = presence or absence of MI
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Motivation

What is the importance of different biological
measurements for predicting presence or absence of MI?

We need:

• A definition of variable importance with minimal assumptions

• A method that:
• Estimates variable importance
• Provides valid uncertainty assessment for our estimates
• May be used with flexible estimation procedures
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Variable importance

• Data O1,O2, . . . ,On from unknown distribution P0 ∈M
• Oi := (Xi ,Yi )
• Covariate vector Xi := (Xi1,Xi2, . . . ,Xip) ∈ Rp

• Outcome Yi ∈ R
• Estimate µP0(x) := EP0(Y | X = x)

• Which features contribute most to variation in µP0(x)?

• Consider µP0,s(x) := EP0 (Y | X(−s) = x(−s))
• X(−s) = covariates with indices in s ⊆ {1, 2, . . . , p} removed
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Existing variable importance methods

Method
Nonparametric

estimation

method

Uncertainty

assessment

Fully general

estimation

Parametric, e.g.,
ANOVA

— X —

Technique-specific
measures, e.g.,
random forests

X — X

Nonparametric
variable importance

using existing
estimation
procedures

X X —
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Variable importance: example

What is the importance of X1 = heart rate vs. X2 = blood sugar
for predicting Y = presence/absence of MI?
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Our contribution

We propose a procedure that:

• estimates a scientifically meaningful parameter consistently
and efficiently, while

• estimating µP0 and µP0,s using state-of-the-art methods, and

• properly quantifies the uncertainty in our estimates
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The parameter of interest

The importance of Xs relative to X(−s) for predicting Y :

ψ0,s :=
EP0

[
{µP0(X )− µP0,s(X )}2

]
VarP0(Y )

.

Interpretation:

• additional proportion of variability in Y explained by including
Xs in the regression

• does not change with estimating procedure

• Equivalent to difference in R2 between the two regressions:

EP0 [{Y − µP0(X )}2]

VarP0(Y )
−

EP0 [{Y − µP0,s(X )}2]

VarP0(Y )

ψ0,s is a property of P0, not any particular algorithm.
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Statistical inference

Using a population-based, model-agnostic variable importance
measure allows us to perform statistical inference.

We do this by borrowing from classical parametric theory:

• MLE θ̂n of θ0; information I (θ0), score ˙̀(θ0 | X )

• Let ˜̀(θ0 | X ) = I−1(θ0) ˙̀(θ0 | X ):

• This is the efficient influence function (EIF) for θ0

•
√
n(θ̂n − θ0) = 1√

n

∑n
i=1

˜̀(θ0 | Xi ) + op(1)

•
√
n(θ̂n − θ0)→d N

[
0,EP0

{
˜̀(θ0 | X )2

}]
= N{0, I−1(θ0)}

• Given an EIF for a nonparametric parameter:

• Estimator with influence function = EIF is efficient
• Can use similar distribution theory to parametric case
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The EIF for Ψs(P) relative to M

Define Ψs(P) := Φs(P)
VarP(Y ) , where

µP(x) = EP(Y | X = x) and µP,s(x) = EP(Y | X(−s) = x(−s))

Φs(P) = EP

[
{µP(x)− µP,s(x)}2

]
Then

o 7→ D∗
P,s(o) :=

2{y − µP(x)}{µP(x)− µP,s(x)}+ {µP(x)− µP,s(x)}2

VarP(Y )

− Φs(P)

{
y − EP(Y )

VarP(Y )

}2
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Asymptotic expansion
• Estimate the relevant components of P0 using P̂n

• Linearize Ψ using the EIF D∗
P,s and use the empirical Pn:

Ψs(P̂n)−Ψs(P0) =

∫
D∗
P̂n,s

(o)d(P̂n − P0)(o) + Rs(P̂n,P0)

=
1

n

n∑
i=1

D∗
P0,s(Oi )

+

∫
{D∗

P̂n,s
(o)− D∗

P0,s(o)}d(Pn − P0)(o)

+ Rs(P̂n,P0)− 1

n

n∑
i=1

D∗
P̂n,s

(Oi )

linear term; (1st order)
empirical process term; (2nd order)
remainder term; (2nd order)
problem term! (irregular)
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A naive estimator of ψ0,s

ψ0,s =
EP0

(
{µP0(X )− µP0,s(X )}2

)
VarP0(Y )

Plug in estimators µ̂(x) and µ̂s(x):

ψ̂naive,s =
n−1

∑n
i=1 {µ̂(Xi )− µ̂s(Xi )}2

n−1
∑n

i=1(Yi − Ȳn)2
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Problems with the naive estimator

Ψs(P̂n)−Ψs(P0) =
1

n

n∑
i=1

D∗
P0,s(Oi ) + Rs(P̂n,P0)− 1

n

n∑
i=1

D∗
P̂n,s

(Oi )

+

∫
{D∗

P̂n,s
(o)− D∗

P0,s(o)}d(Pn − P0)(o)

• “Bias” incurred from estimating components of P0

• Generally neither efficient nor regular and asymptotically linear
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Our proposed corrected estimator

Remove bias of ψ̂naive,s and get regularity, asymptotic linearity, and
efficiency by adding on 1

n

∑n
i=1 D

∗
P̂n,s

(Oi ):

ψ̂n,s = ψ̂naive,s +
1

n

n∑
i=1

D∗
P̂n,s

(Oi ),

or equivalently

ψ̂n,s = ψ̂naive,s +
n−1

∑n
i=1 2{Yi − µ̂(Xi )}{µ̂(Xi )− µ̂s(Xi )}

n−1
∑n

i=1(Yi − Ȳn)2
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Asymptotic behavior of the proposed estimator

Under some regularity conditions,

√
n(ψ̂n,s − ψ0,s) = n−1/2

n∑
i=1

D∗
P0,s(Oi ) + oP(1)

and

√
n(ψ̂n,s − ψ0,s)→d N

[
0,EP0

{
D∗
P0,s(O)2

}]
.

• Consistent, regular, efficient

• Regularity conditions:
• ψ0,s 6= 0
• µ̂, µ̂s converge quickly enough to µP0 , µP0,s

• D∗
P̂n,s

falls in a P0-Donsker class with probability tending to one

• Estimate variance of ψ̂n,s empirically
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Simulations with a low-dimensional vector of covariates

For data (Y ,X1,X2) with distribution

X1,X2
iid∼ Unif (−1, 1) and ε ∼ N(0, 1) independent of (X1,X2)

Y = X 2
1

(
X1 +

7

5

)
+

25

9
X 2

2 + ε

estimate the importance of X1 and X2.

• Truths: ψ0,1 ≈ 0.158, ψ0,2 ≈ 0.342

• Locally-constant loess, five-fold CV for bandwidth

• Percentile bootstrap for naive confidence intervals
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Results
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Results
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Results (cross-validated estimator)
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Results (cross-validated estimator)
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The CORIS data [Rousseaw et al. (1983)]

n = 462, outcome = presence of MI

• Behavioral:

• tobacco consumption,
• alcohol consumption,
• type-A behavior

• Biological:

• systolic blood pressure,
• LDL cholesterol,
• adiposity,
• obesity,
• family history,
• age

Super learner [van der Laan et al. (2007)] with boosted trees, elastic net,

GAMs, random forests, and five-fold CV
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Results from the CORIS data

26



Conclusions

We propose a procedure for estimating the difference in
population R2 when including Xs and removing Xs , where:

• we estimate importance consistently and efficiently,

• obtain valid CIs, and

• estimate the conditional means using state-of-the-art methods

Future work:

• dealing with a boundary null hypothesis,

• working in a structured model (e.g., additive models),

• nested case-control study data,

• censoring
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Thank you!

CRAN: package vimp PyPI: package vimpy

https://github.com/bdwilliamson/vimp

Preprint: https://biostats.bepress.com/uwbiostat/paper422/
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