Nonparametric variable importance using an augmented neural network with multi-task learning

Jean Feng, Brian Williamson, Marco Carone, Noah Simon

ICML 2018

12 July 2018

What is the importance of different medical tests and measurements for predicting patient survival?

 X_1 = heart rate X_2 = blood sugar Y = patient survival

"What is the importance of different medical tests and measurements for predicting patient survival?"

We need:

• A definition of variable importance with minimal assumptions

"What is the importance of different medical tests and measurements for predicting patient survival?"

We need:

- A definition of variable importance with minimal assumptions
- A method that:
 - Estimates variable importance

"What is the importance of different medical tests and measurements for predicting patient survival?"

We need:

- A definition of variable importance with minimal assumptions
- A method that:
 - Estimates variable importance
 - Provides valid uncertainty assessment for our estimates, e.g., confidence intervals

"What is the importance of different medical tests and measurements for predicting patient survival?"

We need:

- A definition of variable importance with minimal assumptions
- A method that:
 - Estimates variable importance
 - Provides valid uncertainty assessment for our estimates, e.g., confidence intervals
 - Is computationally efficient

Existing variable importance methods

Method	Nonparametric estimation method	Uncertainty assessment	Computationally efficient
Existing variable importance measures in the neural network literature	\checkmark		\checkmark
Nonparametric variable importance using existing estimation procedures	\checkmark	\checkmark	

Contribution

Statistical inference on nonparametric variable importance using an augmented neural network Contribution

Statistical inference on **nonparametric** variable importance ✓ Uncertainty assessment using an **augmented** neural network Contribution

Statistical inference on **nonparametric** variable importance ✓ Uncertainty assessment using an **augmented** neural network ✓ Computationally efficient

Nonparametric variable importance

For random variables $(X, Y) \sim P_0$, we define the importance of X_s : covariates X with indices in $s \subseteq \{1, 2, ..., p\}$ relative to $X_{(-s)}$: covariates with indices in s removed for predicting Y as

$$\psi_{0,s} := \frac{E_{P_0}(\{E_{P_0}[Y \mid X] - E_{P_0}[Y \mid X_{(-s)}]\}^2)}{\operatorname{Var}_{P_0}(Y)}$$

What is the importance of X_1 = heart rate vs. X_2 = blood sugar for predicting Y = patient survival?

Importance of X_1 :

What is the importance of X_1 = heart rate vs. X_2 = blood sugar for predicting Y = patient survival?

Importance of X_1 :

What is the importance of X_1 = heart rate vs. X_2 = blood sugar for predicting Y = patient survival?

Importance of X_2 :

What is the importance of X_1 = heart rate vs. X_2 = blood sugar for predicting Y = patient survival?

Importance of X_2 :

Statistical Inference

Using a **population-based**, **model-agnostic** variable importance measure allows us to perform **formal statistical inference**.

Statistical Inference

Using a **population-based**, **model-agnostic** variable importance measure allows us to perform **formal statistical inference**.

We estimate $\psi_{\mathbf{0},\mathbf{s}}$ via the estimator $\hat{\psi}_{\mathbf{n},\mathbf{s}}$, defined as

 $\frac{\frac{1}{n}\sum_{i=1}^{n}\{2Y_{i}-\hat{E}[Y\mid X_{i}]-\hat{E}[Y\mid X_{(-s),i}]\}\{\hat{E}[Y\mid X_{i}]-\hat{E}[Y\mid X_{(-s),i}]\}}{\widehat{\mathsf{Var}}(Y)},$

Statistical Inference

Using a **population-based**, **model-agnostic** variable importance measure allows us to perform **formal statistical inference**.

We estimate $\psi_{\mathbf{0},\mathbf{s}}$ via the estimator $\hat{\psi}_{\mathbf{n},\mathbf{s}}$, defined as

$$\frac{\frac{1}{n}\sum_{i=1}^{n}\{2Y_{i}-\hat{E}[Y\mid X_{i}]-\hat{E}[Y\mid X_{(-s),i}]\}\{\hat{E}[Y\mid X_{i}]-\hat{E}[Y\mid X_{(-s),i}]\}}{\widehat{\mathsf{Var}}(Y)}$$

- $\hat{\psi}_{n,s}$ is an asymptotically efficient estimator.
- We can construct **confidence intervals** centered at $\hat{\psi}_{n,s}$.

Statistical inference for multiple variable groups

To do statistical inference on the importance of multiple variable groups

$$\mathcal{S} = \{s_i\}_{i=1}^N$$
 for $s_i \subseteq \{1, ..., p\}$,

we need estimates of:

• $E[Y|X_{(-s)}]$ for each $s \in S$

Estimating conditional means: multiple models

Existing methods estimate each of the conditional means separately, which is **computationally expensive** if |S| is large.

Estimating conditional means: augmented neural network

Instead we propose using a single neural network to estimate E[Y|X] as well as all $E[Y|X_{(-s)}]$ for all $s \in S$.

	Input to NN			
Conditional mean	x_1 node	x_2 node	m_1 node	m_2 node
$E[Y X_1 = x_1, X_2 = x_2]$	x1	<i>x</i> ₂	0	0
$E[Y X_1 = x_1]$	x1	—	0	1
$E[Y X_2 = x_2]$	—	<i>x</i> ₂	1	0

Augmented neural network

We can train the augmented NN by minimizing a multi-task loss:

Loss for estimating
$$E(Y|X) + \sum_{s \in S}$$
 Loss for estimating $E[Y|X_{(-s)}]$

Computational gain: Training time is about the same as training time for a single network in the multiple network approach.

Performance gain: The augmented NN regularizes the estimates, which translates into better finite-sample performance.

Simulation study

For random variables $(Y, X_1, ..., X_6)$ with distribution

 $Y = X_1 \sin(X_1 + 2X_2) \cos(X_3 + 2X_4) + \epsilon$

estimate importance of $\{x_1, x_2\}$ and $\{x_3, x_4\}$:

Simulation study

For random variables $(Y, X_1, ..., X_6)$ with distribution

 $Y = X_1 \sin(X_1 + 2X_2) \cos(X_3 + 2X_4) + \epsilon$

estimate importance of $\{x_1, x_2\}$ and $\{x_3, x_4\}$:

Predicting in-hospital mortality of ICU patients

PhysioNet/CinC Challenge 2012: 4000 patient records with medical test measurements over 48 hours

Goal: understand the importance of medical tests for predicting in-hospital mortality of ICU patients

⇐ Glasgow Coma Score (GCS): measures patient consciousness, highest scoring item in SAPS II

Conclusion

- We propose estimating a nonparametric variable importance measure, enabling us to assess the uncertainty of our estimates.
- We show how an **augmented neural network** structure enables us to estimate conditional means quickly with improved finite-sample performance.

Thank you!

Poster #139

https://github.com/jjfeng/nnet_var_import